Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers (1308.2116v3)

Published 9 Aug 2013 in cs.AI

Abstract: MaLeS is an automatic tuning framework for automated theorem provers. It provides solutions for both the strategy finding as well as the strategy scheduling problem. This paper describes the tool and the methods used in it, and evaluates its performance on three automated theorem provers: E, LEO-II and Satallax. An evaluation on a subset of the TPTP library problems shows that on average a MaLeS-tuned prover solves 8.67% more problems than the prover with its default settings.

Citations (22)

Summary

We haven't generated a summary for this paper yet.