Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elliptic differential operators on Lipschitz domains and abstract boundary value problems (1307.7501v1)

Published 29 Jul 2013 in math.AP and math.SP

Abstract: This paper consists of two parts. In the first part, which is of more abstract nature, the notion of quasi boundary triples and associated Weyl functions is developed further in such a way that it can be applied to elliptic boundary value problems on non-smooth domains. A key feature is the extension of the boundary maps by continuity to the duals of certain range spaces, which directly leads to a description of all self-adjoint extensions of the underlying symmetric operator with the help of abstract boundary values. In the second part of the paper a complete description is obtained of all self-adjoint realizations of the Laplacian on bounded Lipschitz domains, as well as Kre\u{\i}n type resolvent formulas and a spectral characterization in terms of energy dependent Dirichlet-to-Neumann maps. These results can be viewed as the natural generalization of recent results from Gesztesy and Mitrea for quasi-convex domains. In this connection we also characterize the maximal range spaces of the Dirichlet and Neumann trace operators on a bounded Lipschitz domain in terms of the Dirichlet-to-Neumann map. The general results from the first part of the paper are also applied to higher order elliptic operators on smooth domains, and particular attention is paid to the second order case which is illustrated with various examples.

Summary

We haven't generated a summary for this paper yet.