Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Frames from Text with an Unsupervised Latent Variable Model (1307.7382v1)

Published 28 Jul 2013 in cs.CL

Abstract: We develop a probabilistic latent-variable model to discover semantic frames---types of events and their participants---from corpora. We present a Dirichlet-multinomial model in which frames are latent categories that explain the linking of verb-subject-object triples, given document-level sparsity. We analyze what the model learns, and compare it to FrameNet, noting it learns some novel and interesting frames. This document also contains a discussion of inference issues, including concentration parameter learning; and a small-scale error analysis of syntactic parsing accuracy.

Citations (17)

Summary

We haven't generated a summary for this paper yet.