Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algebraic Structure of Combined Traces

Published 27 Jul 2013 in cs.LO and cs.FL | (1307.7296v3)

Abstract: Traces and their extension called combined traces (comtraces) are two formal models used in the analysis and verification of concurrent systems. Both models are based on concepts originating in the theory of formal languages, and they are able to capture the notions of causality and simultaneity of atomic actions which take place during the process of a system's operation. The aim of this paper is a transfer to the domain of comtraces and developing of some fundamental notions, which proved to be successful in the theory of traces. In particular, we introduce and then apply the notion of indivisible steps, the lexicographical canonical form of comtraces, as well as the representation of a comtrace utilising its linear projections to binary action subalphabets. We also provide two algorithms related to the new notions. Using them, one can solve, in an efficient way, the problem of step sequence equivalence in the context of comtraces. One may view our results as a first step towards the development of infinite combined traces, as well as recognisable languages of combined traces.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.