Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite size scaling study of $N_{\text{f}}=4$ finite density QCD on the lattice

Published 27 Jul 2013 in hep-lat | (1307.7205v1)

Abstract: We explore the phase space spanned by the temperature and the chemical potential for 4-flavor lattice QCD using the Wilson-clover quark action. In order to determine the order of the phase transition, we apply finite size scaling analyses to gluonic and quark observables including plaquette, Polyakov loop and quark number density, and examine their susceptibility, skewness, kurtosis and Challa-Landau-Binder cumulant. Simulations were carried out on lattices of a temporal size fixed at $N_{\text{t}}=4$ and spatial sizes chosen from $63$ up to $103$. Configurations were generated using the phase reweighting approach, while the value of the phase of the quark determinant were carefully monitored. The $\mu$-parameter reweighting technique is employed to precisely locate the point of the phase transition. Among various approximation schemes for calculating the ratio of quark determinants needed for $\mu$-reweighting, we found the Taylor expansion of the logarithm of the quark determinant to be the most reliable. Our finite-size analyses show that the transition is first order at $(\beta, \kappa, \mu/T)=(1.58, 0.1385, 0.584\pm 0.008)$ where $(m_\pi/m_\rho, T/m_\rho)=(0.822, 0.154)$. It weakens considerably at $(\beta, \kappa, \mu/T)=(1.60, 0.1371, 0.821\pm 0.008)$ where $(m_\pi/m_\rho, T/m_\rho)=(0.839, 0.150)$, and a crossover rather than a first order phase transition cannot be ruled out.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.