Papers
Topics
Authors
Recent
2000 character limit reached

5D Super Yang-Mills on $Y^{p,q}$ Sasaki-Einstein manifolds

Published 11 Jul 2013 in hep-th, math-ph, math.MP, and math.SG | (1307.3149v3)

Abstract: On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as $Y{p,q}$ manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large $N$ behaviour for the case of single hypermultiplet in adjoint representation and we derive the $N3$-behaviour in this case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.