Papers
Topics
Authors
Recent
Search
2000 character limit reached

AdaBoost and Forward Stagewise Regression are First-Order Convex Optimization Methods

Published 4 Jul 2013 in stat.ML, cs.LG, and math.OC | (1307.1192v1)

Abstract: Boosting methods are highly popular and effective supervised learning methods which combine weak learners into a single accurate model with good statistical performance. In this paper, we analyze two well-known boosting methods, AdaBoost and Incremental Forward Stagewise Regression (FS$\varepsilon$), by establishing their precise connections to the Mirror Descent algorithm, which is a first-order method in convex optimization. As a consequence of these connections we obtain novel computational guarantees for these boosting methods. In particular, we characterize convergence bounds of AdaBoost, related to both the margin and log-exponential loss function, for any step-size sequence. Furthermore, this paper presents, for the first time, precise computational complexity results for FS$\varepsilon$.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.