Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Active Contour Model for Texture Segmentation (1306.6726v1)

Published 28 Jun 2013 in cs.CV

Abstract: Texture is intuitively defined as a repeated arrangement of a basic pattern or object in an image. There is no mathematical definition of a texture though. The human visual system is able to identify and segment different textures in a given image. Automating this task for a computer is far from trivial. There are three major components of any texture segmentation algorithm: (a) The features used to represent a texture, (b) the metric induced on this representation space and (c) the clustering algorithm that runs over these features in order to segment a given image into different textures. In this paper, we propose an active contour based novel unsupervised algorithm for texture segmentation. We use intensity covariance matrices of regions as the defining feature of textures and find regions that have the most inter-region dissimilar covariance matrices using active contours. Since covariance matrices are symmetric positive definite, we use geodesic distance defined on the manifold of symmetric positive definite matrices PD(n) as a measure of dissimlarity between such matrices. We demonstrate performance of our algorithm on both artificial and real texture images.

Citations (10)

Summary

We haven't generated a summary for this paper yet.