Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture Fuzzy Segmentation using Skew Divergence Adaptive Affinity Functions (1710.02754v1)

Published 7 Oct 2017 in cs.CV, cs.AI, and cs.GR

Abstract: Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been successfully used in the segmentation of images from a wide variety of sources. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper, we propose an extension of the fuzzy segmentation algorithm that uses adaptive textural affinity functions to perform the segmentation of such objects on bidimensional images. The adaptive affinity functions compute their appropriate neighborhood size as they compute the texture descriptors surrounding the seed spels (spatial elements), according to the characteristics of the texture being processed. The algorithm then segments the image with an appropriate neighborhood for each object. We performed experiments on mosaic images that were composed using images from the Brodatz database, and compared our results with the ones produced by a recently published texture segmentation algorithm, showing the applicability of our method.

Summary

We haven't generated a summary for this paper yet.