Papers
Topics
Authors
Recent
2000 character limit reached

Weak bimonoids in duoidal categories

Published 20 Jun 2013 in math.QA and math.CT | (1306.4829v1)

Abstract: Weak bimonoids in duoidal categories are introduced. They provide a common generalization of bimonoids in duoidal categories and of weak bimonoids in braided monoidal categories. Under the assumption that idempotent morphisms in the base category split, they are shown to induce weak bimonads (in four symmetric ways). As a consequence, they have four separable Frobenius base (co)monoids, two in each of the underlying monoidal categories. Hopf modules over weak bimonoids are defined by weakly lifting the induced comonad to the Eilenberg-Moore category of the induced monad. Making appropriate assumptions on the duoidal category in question, the fundamental theorem of Hopf modules is proven which says that the category of modules over one of the base monoids is equivalent to the category of Hopf modules if and only if a Galois-type comonad morphism is an isomorphism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.