BiHom Hopf algebras viewed as Hopf monoids (2003.08819v1)
Abstract: We introduce monoidal categories whose monoidal products of any positive number of factors are lax coherent and whose nullary products are oplax coherent. We call them $\mathsf{Lax}+\mathsf{Oplax}0$-monoidal. Dually, we consider $\mathsf{Lax}0\mathsf{Oplax}+$-monoidal categories which are oplax coherent for positive numbers of factors and lax coherent for nullary monoidal products. We define $\mathsf{Lax}+0\mathsf{Oplax}0+$-duoidal categories with compatible $\mathsf{Lax}+\mathsf{Oplax}0$- and $\mathsf{Lax}0\mathsf{Oplax}+$-monoidal structures. We introduce comonoids in $\mathsf{Lax}+\mathsf{Oplax}0$-monoidal categories, monoids in $\mathsf{Lax}0\mathsf{Oplax}+$-monoidal categories and bimonoids in $\mathsf{Lax}+0\mathsf{Oplax}0+$- duoidal categories. Motivation for these notions comes from a generalization of a construction due to Caenepeel and Goyvaerts. This assigns a $\mathsf{Lax}+0\mathsf{Oplax}0+$-duoidal category $\mathsf D$ to any symmetric monoidal category $\mathsf V$. The unital $\mathsf{BiHom}$-monoids, counital $\mathsf{BiHom}$-comonoids, and unital and counital $\mathsf{BiHom}$-bimonoids in $\mathsf V$ are identified with the monoids, comonoids and bimonoids in $\mathsf D$, respectively.