Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Extreme sizes in the Gibbs-type exchangeable random partitions (1306.2056v5)

Published 9 Jun 2013 in math.ST, math.PR, and stat.TH

Abstract: Gibbs-type exchangeable random partitions, which is a class of multiplicative measures on the set of positive integer partitions, appear in various contexts, including Bayesian statistics, random combinatorial structures, and stochastic models of diversity in various phenomena. Some distributional results on ordered sizes in the Gibbs partition are established by introducing associated partial Bell polynomials and analysis of the generating functions. The combinatorial approach is applied to derive explicit results on asymptotic behavior of the extreme sizes in the Gibbs partition. Especially, Ewens-Pitman partition, which is the sample from the Poisson-Dirichlet process and has been discussed from rather model-specific viewpoints, and a random partition which was recently introduced by Gnedin, are discussed in the details. As by-products, some formulas for the associated partial Bell polynomials are presented.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)