Papers
Topics
Authors
Recent
2000 character limit reached

Extreme sizes in the Gibbs-type exchangeable random partitions

Published 9 Jun 2013 in math.ST, math.PR, and stat.TH | (1306.2056v5)

Abstract: Gibbs-type exchangeable random partitions, which is a class of multiplicative measures on the set of positive integer partitions, appear in various contexts, including Bayesian statistics, random combinatorial structures, and stochastic models of diversity in various phenomena. Some distributional results on ordered sizes in the Gibbs partition are established by introducing associated partial Bell polynomials and analysis of the generating functions. The combinatorial approach is applied to derive explicit results on asymptotic behavior of the extreme sizes in the Gibbs partition. Especially, Ewens-Pitman partition, which is the sample from the Poisson-Dirichlet process and has been discussed from rather model-specific viewpoints, and a random partition which was recently introduced by Gnedin, are discussed in the details. As by-products, some formulas for the associated partial Bell polynomials are presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.