Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank (1304.6233v2)

Published 23 Apr 2013 in stat.ML and math.OC

Abstract: Rank minimization has attracted a lot of attention due to its robustness in data recovery. To overcome the computational difficulty, rank is often replaced with nuclear norm. For several rank minimization problems, such a replacement has been theoretically proven to be valid, i.e., the solution to nuclear norm minimization problem is also the solution to rank minimization problem. Although it is easy to believe that such a replacement may not always be valid, no concrete example has ever been found. We argue that such a validity checking cannot be done by numerical computation and show, by analyzing the noiseless latent low rank representation (LatLRR) model, that even for very simple rank minimization problems the validity may still break down. As a by-product, we find that the solution to the nuclear norm minimization formulation of LatLRR is non-unique. Hence the results of LatLRR reported in the literature may be questionable.

Citations (30)

Summary

We haven't generated a summary for this paper yet.