Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Preserving Data Mining by Using Implicit Function Theorem (1304.4329v1)

Published 16 Apr 2013 in cs.CR and cs.DB

Abstract: Data mining has made broad significant multidisciplinary field used in vast application domains and extracts knowledge by identifying structural relationship among the objects in large data bases. Privacy preserving data mining is a new area of data mining research for providing privacy of sensitive knowledge of information extracted from data mining system to be shared by the intended persons not to everyone to access. In this paper, we proposed a new approach of privacy preserving data mining by using implicit function theorem for secure transformation of sensitive data obtained from data mining system. we proposed two way enhanced security approach. First transforming original values of sensitive data into different partial derivatives of functional values for perturbation of data. secondly generating symmetric key value by Eigen values of jacobian matrix for secure computation. we given an example of academic sensitive data converting into vector valued functions to explain about our proposed concept and presented implementation based results of new proposed of approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.