Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text (1304.2401v1)

Published 8 Apr 2013 in cs.IR and cs.HC

Abstract: We address the Named Entity Disambiguation (NED) problem for short, user-generated texts on the social Web. In such settings, the lack of linguistic features and sparse lexical context result in a high degree of ambiguity and sharp performance drops of nearly 50% in the accuracy of conventional NED systems. We handle these challenges by developing a model of user-interest with respect to a personal knowledge context; and Wikipedia, a particularly well-established and reliable knowledge base, is used to instantiate the procedure. We conduct systematic evaluations using individuals' posts from Twitter, YouTube, and Flickr and demonstrate that our novel technique is able to achieve substantial performance gains beyond state-of-the-art NED methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.