Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Evidential Reasoning in a Network Usage Prediction Testbed (1304.2368v1)

Published 27 Mar 2013 in cs.AI

Abstract: This paper reports on empirical work aimed at comparing evidential reasoning techniques. While there is prima facie evidence for some conclusions, this i6 work in progress; the present focus is methodology, with the goal that subsequent results be meaningful. The domain is a network of UNIX* cycle servers, and the task is to predict properties of the state of the network from partial descriptions of the state. Actual data from the network are taken and used for blindfold testing in a betting game that allows abstention. The focal technique has been Kyburg's method for reasoning with data of varying relevance to a particular query, though the aim is to be able eventually to compare various uncertainty calculi. The conclusions are not novel, but are instructive. 1. All of the calculi performed better than human subjects, so unbiased access to sample experience is apparently of value. 2. Performance depends on metric: (a) when trials are repeated, net = gains - losses favors methods that place many bets, if the probability of placing a correct bet is sufficiently high; that is, it favors point-valued formalisms; (b) yield = gains/(gains + lossee) favors methods that bet only when sure to bet correctly; that is, it favors interval-valued formalisms. 3. Among the calculi, there were no clear winners or losers. Methods are identified for eliminating the bias of the net as a performance criterion and for separating the calculi effectively: in both cases by posting odds for the betting game in the appropriate way.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube