Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Combination of Cutset Conditioning with Clique-Tree Propagation in the Pathfinder System (1304.1114v1)

Published 27 Mar 2013 in cs.AI

Abstract: Cutset conditioning and clique-tree propagation are two popular methods for performing exact probabilistic inference in Bayesian belief networks. Cutset conditioning is based on decomposition of a subset of network nodes, whereas clique-tree propagation depends on aggregation of nodes. We describe a means to combine cutset conditioning and clique- tree propagation in an approach called aggregation after decomposition (AD). We discuss the application of the AD method in the Pathfinder system, a medical expert system that offers assistance with diagnosis in hematopathology.

Citations (24)

Summary

We haven't generated a summary for this paper yet.