Asymptotic enumeration of sparse multigraphs with given degrees (1303.4218v2)
Abstract: Let J and J* be subsets of Z+ such that 0,1\in J and 0\in J*. For infinitely many n, let k=(k_1,..., k_n) be a vector of nonnegative integers whose sum M is even. We find an asymptotic expression for the number of multigraphs on the vertex set {1,..., n} with degree sequence given by k, such that every loop has multiplicity in J* and every non-loop edge has multiplicity in J. Equivalently, these are symmetric integer matrices with values J* allowed on the diagonal and J off the diagonal. Our expression holds when the maximum degree K satisfies K = o(M1/3). We prove this result using the switching method, building on an asymptotic enumeration of simple graphs with given degrees (McKay and Wormald, 1991). Our application of the switching method introduces a novel way of combining several different switching operations into a single computation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.