Reconstruction of Directed Networks from Consensus Dynamics
Abstract: This paper addresses the problem of identifying the topology of an unknown, weighted, directed network running a consensus dynamics. We propose a methodology to reconstruct the network topology from the dynamic response when the system is stimulated by a wide-sense stationary noise of unknown power spectral density. The method is based on a node-knockout, or grounding, procedure wherein the grounded node broadcasts zero without being eliminated from the network. In this direction, we measure the empirical cross-power spectral densities of the outputs between every pair of nodes for both grounded and ungrounded consensus to reconstruct the unknown topology of the network. We also establish that in the special cases of undirected or purely unidirectional networks, the reconstruction does not need grounding. Finally, we extend our results to the case of a directed network assuming a general dynamics, and prove that the developed method can detect edges and their direction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.