Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction error identification of linear dynamic networks with rank-reduced noise (1711.06369v2)

Published 17 Nov 2017 in cs.SY

Abstract: Dynamic networks are interconnected dynamic systems with measured node signals and dynamic modules reflecting the links between the nodes. We address the problem of \red{identifying a dynamic network with known topology, on the basis of measured signals}, for the situation of additive process noise on the node signals that is spatially correlated and that is allowed to have a spectral density that is singular. A prediction error approach is followed in which all node signals in the network are jointly predicted. The resulting joint-direct identification method, generalizes the classical direct method for closed-loop identification to handle situations of mutually correlated noise on inputs and outputs. When applied to general dynamic networks with rank-reduced noise, it appears that the natural identification criterion becomes a weighted LS criterion that is subject to a constraint. This constrained criterion is shown to lead to maximum likelihood estimates of the dynamic network and therefore to minimum variance properties, reaching the Cramer-Rao lower bound in the case of Gaussian noise.

Citations (45)

Summary

We haven't generated a summary for this paper yet.