Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Periodic Reference Tracking Using Batch-Mode Reinforcement Learning with Application to Gene Regulatory Network Control (1303.2987v1)

Published 12 Mar 2013 in cs.SY and math.OC

Abstract: In this paper, we consider the periodic reference tracking problem in the framework of batch-mode reinforcement learning, which studies methods for solving optimal control problems from the sole knowledge of a set of trajectories. In particular, we extend an existing batch-mode reinforcement learning algorithm, known as Fitted Q Iteration, to the periodic reference tracking problem. The presented periodic reference tracking algorithm explicitly exploits a priori knowledge of the future values of the reference trajectory and its periodicity. We discuss the properties of our approach and illustrate it on the problem of reference tracking for a synthetic biology gene regulatory network known as the generalised repressilator. This system can produce decaying but long-lived oscillations, which makes it an interesting system for the tracking problem. In our companion paper we also take a look at the regulation problem of the toggle switch system, where the main goal is to drive the system's states to a specific bounded region in the state space.

Citations (12)

Summary

We haven't generated a summary for this paper yet.