Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expensive Optimisation: A Metaheuristics Perspective (1303.2215v1)

Published 9 Mar 2013 in cs.NE

Abstract: Stochastic, iterative search methods such as Evolutionary Algorithms (EAs) are proven to be efficient optimizers. However, they require evaluation of the candidate solutions which may be prohibitively expensive in many real world optimization problems. Use of approximate models or surrogates is being explored as a way to reduce the number of such evaluations. In this paper we investigated three such methods. The first method (DAFHEA) partially replaces an expensive function evaluation by its approximate model. The approximation is realized with support vector machine (SVM) regression models. The second method (DAFHEA II) is an enhancement on DAFHEA to accommodate for uncertain environments. The third one uses surrogate ranking with preference learning or ordinal regression. The fitness of the candidates is estimated by modeling their rank. The techniques' performances on some of the benchmark numerical optimization problems have been reported. The comparative benefits and shortcomings of both techniques have been identified.

Citations (4)

Summary

We haven't generated a summary for this paper yet.