Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Compressive Sampling of Spatially Sparse Fields in Wireless Sensor Networks (1303.1719v1)

Published 25 Jan 2013 in cs.IT and math.IT

Abstract: Wireless sensor networks (WSN), i.e. networks of autonomous, wireless sensing nodes spatially deployed over a geographical area, are often faced with acquisition of spatially sparse fields. In this paper, we present a novel bandwidth/energy efficient CS scheme for acquisition of spatially sparse fields in a WSN. The paper contribution is twofold. Firstly, we introduce a sparse, structured CS matrix and we analytically show that it allows accurate reconstruction of bidimensional spatially sparse signals, such as those occurring in several surveillance application. Secondly, we analytically evaluate the energy and bandwidth consumption of our CS scheme when it is applied to data acquisition in a WSN. Numerical results demonstrate that our CS scheme achieves significant energy and bandwidth savings wrt state-of-the-art approaches when employed for sensing a spatially sparse field by means of a WSN.

Citations (8)

Summary

We haven't generated a summary for this paper yet.