Jordan Blocks of H^2(D^n) (1303.1041v3)
Abstract: We develop a several variables analog of the Jordan blocks of the Hardy space $H2(\mathbb{D})$. In this consideration, we obtain a complete characterization of the doubly commuting quotient modules of the Hardy module $H2(\mathbb{D}n)$. We prove that a quotient module $\clq$ of $H2(\mathbb{D}n)$ ($n \geq 2$) is doubly commuting if and only if [\clq = \clq_{\Theta_1} \otimes \cdots \otimes \clq_{\Theta_n},]where each $\clq_{\Theta_i}$ is either a one variable Jordan block $H2(\mathbb{D})/\Theta_i H2(\mathbb{D})$ for some inner function $\Theta_i$ or the Hardy module $H2(\mathbb{D})$ on the unit disk for all $i = 1, \ldots, n$. We say that a submodule $\cls$ of $H2(\mathbb{D}n)$ is a co-doubly commuting if the quotient module $H2(\mathbb{D}n)/\cls$ is doubly commuting. We obtain a Beurling like theorem for the class of co-doubly commuting submodules of $H2(\mathbb{D}n)$. We prove that a submodule $\cls$ of $H2(\mathbb{D}n)$ is co-doubly commuting if and only if [\cls = \mathop{\sum}{i=1}m \Theta_i H2(\mathbb{D}n),]for some integer $m \leq n$ and one variable inner functions ${\Theta_i}{i=1}m$.