Papers
Topics
Authors
Recent
2000 character limit reached

Set-Membership Conjugate Gradient Constrained Adaptive Filtering Algorithm for Beamforming

Published 4 Mar 2013 in cs.IT and math.IT | (1303.0890v1)

Abstract: We introduce a new linearly constrained minimum variance (LCMV) beamformer that combines the set-membership (SM) technique with the conjugate gradient (CG) method, and develop a low-complexity adaptive filtering algorithm for beamforming. The proposed algorithm utilizes a CG-based vector and a variable forgetting factor to perform the data-selective updates that are controlled by a time-varying bound related to the parameters. For the update, the CG-based vector is calculated iteratively (one iteration per update) to obtain the filter parameters and to avoid the matrix inversion. The resulting iterations construct a space of feasible solutions that satisfy the constraints of the LCMV optimization problem. The proposed algorithm reduces the computational complexity significantly and shows an enhanced convergence and tracking performance over existing algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.