Asymptotics of Discrete Chebyshev Polynomials (1302.7118v2)
Abstract: The discrete Chebyshev polynomials $t_n(x,N)$ are orthogonal with respect to a distribution, which is a step function with jumps one unit at the points $x=0,1,\cdots, N-1$, $N$ being a fixed positive integer. By using a double integral representation, we have recently obtained asymptotic expansions for $t_{n}(aN,N+1)$ in the double scaling limit, namely, $N\rightarrow\infty$ and $n/N\rightarrow b$, where $b\in (0,1)$ and $a\in(-\infty,\infty)$; see [Studies in Appl. Math. \textbf{128} (2012), 337-384]. In the present paper, we continue to investigate the behaviour of these polynomials when the parameter $b$ approaches the endpoints of the interval $(0,1)$. While the case $b\rightarrow 1$ is relatively simple (since it is very much like the case when $b$ is fixed), the case $b\rightarrow 0$ is quite complicated. The discussion of the latter case is divided into several subcases, depending on the quantities $n$, $x$ and $xN/n2$, and different special functions have been used as approximants, including Airy, Bessel and Kummer functions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.