Papers
Topics
Authors
Recent
2000 character limit reached

Convergence of densities of some functionals of Gaussian processes

Published 27 Feb 2013 in math.PR | (1302.6962v2)

Abstract: The aim of this paper is to establish the uniform convergence of the densities of a sequence of random variables, which are functionals of an underlying Gaussian process, to a normal density. Precise estimates for the uniform distance are derived by using the techniques of Malliavin calculus, combined with Stein's method for normal approximation. We need to assume some non-degeneracy conditions. First, the study is focused on random variables in a fixed Wiener chaos, and later, the results are extended to the uniform convergence of the derivatives of the densities and to the case of random vectors in some fixed chaos, which are uniformly non-degenerate in the sense of Malliavin calculus. Explicit upper bounds for the uniform norm are obtained for random variables in the second Wiener chaos, and an application to the convergence of densities of the least square estimator for the drift parameter in Ornstein-Uhlenbeck processes is discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.