Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Maintenance in Bayesian Networks (1302.6841v1)

Published 27 Feb 2013 in cs.AI

Abstract: Bayesian Belief Networks (BBNs) are a powerful formalism for reasoning under uncertainty but bear some severe limitations: they require a large amount of information before any reasoning process can start, they have limited contradiction handling capabilities, and their ability to provide explanations for their conclusion is still controversial. There exists a class of reasoning systems, called Truth Maintenance Systems (TMSs), which are able to deal with partially specified knowledge, to provide well-founded explanation for their conclusions, and to detect and handle contradictions. TMSs incorporating measure of uncertainty are called Belief Maintenance Systems (BMSs). This paper describes how a BMS based on probabilistic logic can be applied to BBNs, thus introducing a new class of BBNs, called Ignorant Belief Networks, able to incrementally deal with partially specified conditional dependencies, to provide explanations, and to detect and handle contradictions.

Citations (21)

Summary

We haven't generated a summary for this paper yet.