Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using New Data to Refine a Bayesian Network (1302.6826v1)

Published 27 Feb 2013 in cs.AI

Abstract: We explore the issue of refining an existent Bayesian network structure using new data which might mention only a subset of the variables. Most previous works have only considered the refinement of the network's conditional probability parameters, and have not addressed the issue of refining the network's structure. We develop a new approach for refining the network's structure. Our approach is based on the Minimal Description Length (MDL) principle, and it employs an adapted version of a Bayesian network learning algorithm developed in our previous work. One of the adaptations required is to modify the previous algorithm to account for the structure of the existent network. The learning algorithm generates a partial network structure which can then be used to improve the existent network. We also present experimental evidence demonstrating the effectiveness of our approach.

Citations (71)

Summary

We haven't generated a summary for this paper yet.