Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Testing Whether an Embedded Bayesian Network Represents a Probability Model (1302.6809v1)

Published 27 Feb 2013 in cs.AI

Abstract: Testing the validity of probabilistic models containing unmeasured (hidden) variables is shown to be a hard task. We show that the task of testing whether models are structurally incompatible with the data at hand, requires an exponential number of independence evaluations, each of the form: "X is conditionally independent of Y, given Z." In contrast, a linear number of such evaluations is required to test a standard Bayesian network (one per vertex). On the positive side, we show that if a network with hidden variables G has a tree skeleton, checking whether G represents a given probability model P requires the polynomial number of such independence evaluations. Moreover, we provide an algorithm that efficiently constructs a tree-structured Bayesian network (with hidden variables) that represents P if such a network exists, and further recognizes when such a network does not exist.

Citations (6)

Summary

We haven't generated a summary for this paper yet.