Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring latent structures via information inequalities (1407.2256v1)

Published 8 Jul 2014 in stat.ML and quant-ph

Abstract: One of the goals of probabilistic inference is to decide whether an empirically observed distribution is compatible with a candidate Bayesian network. However, Bayesian networks with hidden variables give rise to highly non-trivial constraints on the observed distribution. Here, we propose an information-theoretic approach, based on the insight that conditions on entropies of Bayesian networks take the form of simple linear inequalities. We describe an algorithm for deriving entropic tests for latent structures. The well-known conditional independence tests appear as a special case. While the approach applies for generic Bayesian networks, we presently adopt the causal view, and show the versatility of the framework by treating several relevant problems from that domain: detecting common ancestors, quantifying the strength of causal influence, and inferring the direction of causation from two-variable marginals.

Citations (43)

Summary

We haven't generated a summary for this paper yet.