Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of Inter-Subnet Belief Updating in Multiply Sectioned Bayesian Networks (1302.4991v1)

Published 20 Feb 2013 in cs.AI

Abstract: Recent developments show that Multiply Sectioned Bayesian Networks (MSBNs) can be used for diagnosis of natural systems as well as for model-based diagnosis of artificial systems. They can be applied to single-agent oriented reasoning systems as well as multi-agent distributed probabilistic reasoning systems. Belief propagation between a pair of subnets plays a central role in maintenance of global consistency in a MSBN. This paper studies the operation UpdateBelief, presented originally with MSBNs, for inter-subnet propagation. We analyze how the operation achieves its intended functionality, which provides hints as for how its efficiency can be improved. We then define two new versions of UpdateBelief that reduce the computation time for inter-subnet propagation. One of them is optimal in the sense that the minimum amount of computation for coordinating multi-linkage belief propagation is required. The optimization problem is solved through the solution of a graph-theoretic problem: the minimum weight open tour in a tree.

Citations (17)

Summary

We haven't generated a summary for this paper yet.