Sommes friables d'exponentielles et applications (1302.4318v2)
Abstract: An integer is said to be $y$-friable if its greatest prime factor is less than $y$. In this paper, we obtain estimates for exponential sums over $y$-friable numbers up to $x$ which are non-trivial when $y \geq \exp{c \sqrt{\log x} \log \log x}$. As a consequence, we obtain an asymptotic formula for the number of $y$-friable solutions to the equation $a+b=c$ which is valid unconditionnally under the same assumption. We use a contour integration argument based on the saddle point method, as developped in the context of friable numbers by Hildebrand & Tenenbaum, and used by Lagarias, Soundararajan and Harper to study exponential and character sums over friable numbers.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.