Papers
Topics
Authors
Recent
2000 character limit reached

Sommes friables d'exponentielles et applications (1302.4318v2)

Published 18 Feb 2013 in math.NT

Abstract: An integer is said to be $y$-friable if its greatest prime factor is less than $y$. In this paper, we obtain estimates for exponential sums over $y$-friable numbers up to $x$ which are non-trivial when $y \geq \exp{c \sqrt{\log x} \log \log x}$. As a consequence, we obtain an asymptotic formula for the number of $y$-friable solutions to the equation $a+b=c$ which is valid unconditionnally under the same assumption. We use a contour integration argument based on the saddle point method, as developped in the context of friable numbers by Hildebrand & Tenenbaum, and used by Lagarias, Soundararajan and Harper to study exponential and character sums over friable numbers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.