Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Revision with Uncertain Inputs in the Possibilistic Setting (1302.3575v1)

Published 13 Feb 2013 in cs.AI

Abstract: This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.

Citations (8)

Summary

We haven't generated a summary for this paper yet.