Papers
Topics
Authors
Recent
2000 character limit reached

Empirical Evaluation of Approximation Algorithms for Probabilistic Decoding

Published 30 Jan 2013 in cs.AI | (1301.7409v1)

Abstract: It was recently shown that the problem of decoding messages transmitted through a noisy channel can be formulated as a belief updating task over a probabilistic network [McEliece]. Moreover, it was observed that iterative application of the (linear time) Pearl's belief propagation algorithm designed for polytrees outperformed state of the art decoding algorithms, even though the corresponding networks may have many cycles. This paper demonstrates empirically that an approximation algorithm approx-mpe for solving the most probable explanation (MPE) problem, developed within the recently proposed mini-bucket elimination framework [Dechter96], outperforms iterative belief propagation on classes of coding networks that have bounded induced width. Our experiments suggest that approximate MPE decoders can be good competitors to the approximate belief updating decoders.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.