Papers
Topics
Authors
Recent
2000 character limit reached

A blockBP decoder for the surface code

Published 7 Feb 2024 in quant-ph, cs.IT, and math.IT | (2402.04834v2)

Abstract: We present a new decoder for the surface code, which combines the accuracy of the tensor-network decoders with the efficiency and parallelism of the belief-propagation algorithm. Our main idea is to replace the expensive tensor-network contraction step in the tensor-network decoders with the blockBP algorithm - a recent approximate contraction algorithm, based on belief propagation. Our decoder is therefore a belief-propagation decoder that works in the degenerate maximal likelihood decoding framework. Unlike conventional tensor-network decoders, our algorithm can run efficiently in parallel, and may therefore be suitable for real-time decoding. We numerically test our decoder and show that for a large range of lattice sizes and noise levels it delivers a logical error probability that outperforms the Minimal-Weight-Perfect-Matching (MWPM) decoder, sometimes by more than an order of magnitude.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 26 likes about this paper.