Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lazy Evaluation of Symmetric Bayesian Decision Problems (1301.6716v1)

Published 23 Jan 2013 in cs.AI

Abstract: Solving symmetric Bayesian decision problems is a computationally intensive task to perform regardless of the algorithm used. In this paper we propose a method for improving the efficiency of algorithms for solving Bayesian decision problems. The method is based on the principle of lazy evaluation - a principle recently shown to improve the efficiency of inference in Bayesian networks. The basic idea is to maintain decompositions of potentials and to postpone computations for as long as possible. The efficiency improvements obtained with the lazy evaluation based method is emphasized through examples. Finally, the lazy evaluation based method is compared with the hugin and valuation-based systems architectures for solving symmetric Bayesian decision problems.

Citations (48)

Summary

We haven't generated a summary for this paper yet.