Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimum vertex cover problems on random hypergraphs: replica symmetric solution and a leaf removal algorithm

Published 24 Jan 2013 in cond-mat.dis-nn and cond-mat.stat-mech | (1301.5769v1)

Abstract: We study minimum vertex cover problems on random \alpha-uniform hypergraphs using two different approaches, a replica method in statistical mechanics of random systems and a leaf removal algorithm. It is found that there exists a phase transition at the critical average degree e/(\alpha-1). Below the critical degree, a replica symmetric ansatz in the statistical-mechanical method holdsand the algorithm estimates a solution of the problem which coincide with that by the replica method. In contrast, above the critical degree, the replica symmetric solution becomes unstable and these methods fail to estimate the exact solution.These results strongly suggest a close relation between the replica symmetry and the performance of approximation algorithm.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.