Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convex Variational Image Restoration with Histogram Priors

Published 16 Jan 2013 in math.OC and cs.CV | (1301.3683v2)

Abstract: We present a novel variational approach to image restoration (e.g., denoising, inpainting, labeling) that enables to complement established variational approaches with a histogram-based prior enforcing closeness of the solution to some given empirical measure. By minimizing a single objective function, the approach utilizes simultaneously two quite different sources of information for restoration: spatial context in terms of some smoothness prior and non-spatial statistics in terms of the novel prior utilizing the Wasserstein distance between probability measures. We study the combination of the functional lifting technique with two different relaxations of the histogram prior and derive a jointly convex variational approach. Mathematical equivalence of both relaxations is established and cases where optimality holds are discussed. Additionally, we present an efficient algorithmic scheme for the numerical treatment of the presented model. Experiments using the basic total-variation based denoising approach as a case study demonstrate our novel regularization approach.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.