Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Separation of variables in an asymmetric cyclidic coordinate system (1301.3559v1)

Published 16 Jan 2013 in math.CA, math-ph, math.AP, and math.MP

Abstract: A global analysis is presented of solutions for Laplace's equation on three-dimensional Euclidean space in one of the most general orthogonal asymmetric confocal cyclidic coordinate systems which admit solutions through separation of variables. We refer to this coordinate system as five-cyclide coordinates since the coordinate surfaces are given by two cyclides of genus zero which represent the inversion at the unit sphere of each other, a cyclide of genus one, and two disconnected cyclides of genus zero. This coordinate system is obtained by stereographic projection of sphero-conal coordinates on four-dimensional Euclidean space. The harmonics in this coordinate system are given by products of solutions of second-order Fuchsian ordinary differential equations with five elementary singularities. The Dirichlet problem for the global harmonics in this coordinate system is solved using multiparameter spectral theory in the regions bounded by the asymmetric confocal cyclidic coordinate surfaces.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.