Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamical localization in kicked rotator as a paradigm of other systems: spectral statistics and the localization measure

Published 15 Jan 2013 in nlin.CD and quant-ph | (1301.3487v1)

Abstract: We study the intermediate statistics of the spectrum of quasi-energies and of the eigenfunctions in the kicked rotator, in the case when the corresponding system is fully chaotic while quantally localized. As for the eigenphases, we find clear evidence that the spectral statistics is well described by the Brody distribution, notably better than by the Izrailev's one, which has been proposed and used broadly to describe such cases. We also studied the eigenfunctions of the Floquet operator and their localization. We show the existence of a scaling law between the repulsion parameter with relative localization length, but only as a first order approximation, since another parameter plays a role. We believe and have evidence that a similar analysis applies in time-independent Hamilton systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.