Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization (1301.3389v2)

Published 15 Jan 2013 in cs.NA and cs.LG

Abstract: Non-negative matrix factorization (NMF) has become a popular machine learning approach to many problems in text mining, speech and image processing, bio-informatics and seismic data analysis to name a few. In NMF, a matrix of non-negative data is approximated by the low-rank product of two matrices with non-negative entries. In this paper, the approximation quality is measured by the Kullback-Leibler divergence between the data and its low-rank reconstruction. The existence of the simple multiplicative update (MU) algorithm for computing the matrix factors has contributed to the success of NMF. Despite the availability of algorithms showing faster convergence, MU remains popular due to its simplicity. In this paper, a diagonalized Newton algorithm (DNA) is proposed showing faster convergence while the implementation remains simple and suitable for high-rank problems. The DNA algorithm is applied to various publicly available data sets, showing a substantial speed-up on modern hardware.

Citations (2)

Summary

We haven't generated a summary for this paper yet.