Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Irreducible Virasoro modules from tensor products (1301.2131v1)

Published 10 Jan 2013 in math.RT and math.RA

Abstract: In this paper, we obtain a class of irreducible Virasoro modules by taking tensor products of the irreducible Virasoro modules $\Omega(\lambda,b)$ defined in [LZ], with irreducible highest weight modules $V(\theta,h)$ or with irreducible Virasoro modules Ind${\theta}(N)$ defined in [MZ2]. We determine the necessary and sufficient conditions for two such irreducible tensor products to be isomorphic. Then we prove that the tensor product of $\Omega(\lambda,b)$ with a classical Whittaker module is isomorphic to the module $\mathrm{Ind}{\theta,\lambda}(\mathbb{C_\mathbf{m}})$ defined in [MW]. As a by-product we obtain the necessary and sufficient conditions for the module $\mathrm{Ind}{\theta, \lambda}(\mathbb{C\mathbf{m}})$ to be irreducible. We also generalize the module $\mathrm{Ind}{\theta, \lambda}(\mathbb{C\mathbf{m}})$ to $\mathrm{Ind}{\theta,\lambda}(\mathcal{B}{(n)}{\mathbf{s}})$ for any non-negative integer $ n$ and use the above results to completely determine when the modules $\mathrm{Ind}{\theta,\lambda}(\mathcal{B}{(n)}{\mathbf{s}})$ are irreducible. The submodules of $\mathrm{Ind}{\theta,\lambda}(\mathcal{B}{(n)}{\mathbf{s}})$ are studied and an open problem in [GLZ] is solved. Feigin-Fuchs' Theorem on singular vectors of Verma modules over the Virasoro algebra is crucial to our proofs in this paper.

Summary

We haven't generated a summary for this paper yet.