Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Domain Adaptation with Non-Parametric Copulas (1301.0142v1)

Published 1 Jan 2013 in stat.ML and cs.LG

Abstract: A new framework based on the theory of copulas is proposed to address semi- supervised domain adaptation problems. The presented method factorizes any multivariate density into a product of marginal distributions and bivariate cop- ula functions. Therefore, changes in each of these factors can be detected and corrected to adapt a density model accross different learning domains. Impor- tantly, we introduce a novel vine copula model, which allows for this factorization in a non-parametric manner. Experimental results on regression problems with real-world data illustrate the efficacy of the proposed approach when compared to state-of-the-art techniques.

Citations (33)

Summary

We haven't generated a summary for this paper yet.