Interpolation in waveform space: enhancing the accuracy of gravitational waveform families using numerical relativity (1211.7095v1)
Abstract: Matched-filtering for the identification of compact object mergers in gravitational-wave antenna data involves the comparison of the data stream to a bank of template gravitational waveforms. Typically the template bank is constructed from phenomenological waveform models since these can be evaluated for an arbitrary choice of physical parameters. Recently it has been proposed that singular value decomposition (SVD) can be used to reduce the number of templates required for detection. As we show here, another benefit of SVD is its removal of biases from the phenomenological templates along with a corresponding improvement in their ability to represent waveform signals obtained from numerical relativity (NR) simulations. Using these ideas, we present a method that calibrates a reduced SVD basis of phenomenological waveforms against NR waveforms in order to construct a new waveform approximant with improved accuracy and faithfulness compared to the original phenomenological model. The new waveform family is given numerically through the interpolation of the projection coefficients of NR waveforms expanded onto the reduced basis and provides a generalized scheme for enhancing phenomenological models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.