Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Sets of Probabilities and MinimaxWeighted Expected Regret: New Approaches for Representing Uncertainty and Making Decisions (1210.4853v1)

Published 16 Oct 2012 in cs.GT, cs.AI, and q-fin.TR

Abstract: We consider a setting where an agent's uncertainty is represented by a set of probability measures, rather than a single measure. Measure-bymeasure updating of such a set of measures upon acquiring new information is well-known to suffer from problems; agents are not always able to learn appropriately. To deal with these problems, we propose using weighted sets of probabilities: a representation where each measure is associated with a weight, which denotes its significance. We describe a natural approach to updating in such a situation and a natural approach to determining the weights. We then show how this representation can be used in decision-making, by modifying a standard approach to decision making-minimizing expected regret-to obtain minimax weighted expected regret (MWER).We provide an axiomatization that characterizes preferences induced by MWER both in the static and dynamic case.

Citations (25)

Summary

We haven't generated a summary for this paper yet.