Mixed Tensors of the General Linear Supergroup (1406.0444v3)
Abstract: We describe the image of the canonical tensor functor from Deligne's interpolating category $Rep(GL_{m-n})$ to $Rep(GL(m|n))$ attached to the standard representation. This implies explicit tensor product decompositions between any two projective modules and any two Kostant modules of $GL(m|n)$, covering the decomposition between any two irreducible $GL(m|1)$-representations. We also obtain character and dimension formulas. For $m>n$ we classify the mixed tensors with non-vanishing superdimension. For $m=n$ we characterize the maximally atypical mixed tensors and show some applications regarding tensor products.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.