Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes (1209.4220v4)

Published 19 Sep 2012 in math.PR, math.FA, and math.SP

Abstract: We introduce a class of L\'{e}vy processes subject to specific regularity conditions, and consider their Feynman-Kac semigroups given under a Kato-class potential. Using new techniques, first we analyze the rate of decay of eigenfunctions at infinity. We prove bounds on $\lambda$-subaveraging functions, from which we derive two-sided sharp pointwise estimates on the ground state, and obtain upper bounds on all other eigenfunctions. Next, by using these results, we analyze intrinsic ultracontractivity and related properties of the semigroup refining them by the concept of ground state domination and asymptotic versions. We establish the relationships of these properties, derive sharp necessary and sufficient conditions for their validity in terms of the behavior of the L\'{e}vy density and the potential at infinity, define the concept of borderline potential for the asymptotic properties and give probabilistic and variational characterizations. These results are amply illustrated by key examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.