Local limit theorem for symmetric random walks in Gromov-hyperbolic groups (1209.3217v1)
Abstract: Completing a strategy of Gou\"ezel and Lalley, we prove a local limit theorem for the random walk generated by any symmetric finitely supported probability measure on a non-elementary Gromov-hyperbolic group: denoting by $R$ the inverse of the spectral radius of the random walk, the probability to return to the identity at time $n$ behaves like $C R{-n}n{-3/2}$. An important step in the proof is to extend Ancona's results on the Martin boundary up to the spectral radius: we show that the Martin boundary for $R$-harmonic functions coincides with the geometric boundary of the group. In an appendix, we explain how the symmetry assumption of the measure can be dispensed with for surface groups.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.