Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A spatio-spectral hybridization for edge preservation and noisy image restoration via local parametric mixtures and Lagrangian relaxation (1209.1826v1)

Published 9 Sep 2012 in stat.ME, cs.CV, and stat.AP

Abstract: This paper investigates a fully unsupervised statistical method for edge preserving image restoration and compression using a spatial decomposition scheme. Smoothed maximum likelihood is used for local estimation of edge pixels from mixture parametric models of local templates. For the complementary smooth part the traditional L2-variational problem is solved in the Fourier domain with Thin Plate Spline (TPS) regularization. It is well known that naive Fourier compression of the whole image fails to restore a piece-wise smooth noisy image satisfactorily due to Gibbs phenomenon. Images are interpreted as relative frequency histograms of samples from bi-variate densities where the sample sizes might be unknown. The set of discontinuities is assumed to be completely unsupervised Lebesgue-null, compact subset of the plane in the continuous formulation of the problem. Proposed spatial decomposition uses a widely used topological concept, partition of unity. The decision on edge pixel neighborhoods are made based on the multiple testing procedure of Holms. Statistical summary of the final output is decomposed into two layers of information extraction, one for the subset of edge pixels and the other for the smooth region. Robustness is also demonstrated by applying the technique on noisy degradation of clean images.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.